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SYNTHESIS OF SELF-TIMED CIRCUITS BY PROGRAM TRANSFORMATION *

Steven M. Burns and Alain J. Martin

Computer Science Department
California Institute of Technology
Pasadena, CA 91125 USA

Self-timed circuits can be synthesized from concurrent programs in two logically
separate phases. First, through a series of program transformations, the source
program is decomposed into an equivalent program constructed entirely from in-
stances of basic processes. These basic processes correspond to the syntactic con-
structs of the source language. The remainder of the synthesis procedure consists
of compiling each of the basic processes into a self-timed circuit using techniques
described in earlier papers. These compilations need to be done only once. This
paper describes in detail the program transformations used in an automated syn-
thesis procedure developed at Caltech. The transformations used are applications
of process decomposition, a simple technique that is easy to verify. The circuits
synthesized by these program transformations are correct by construction; thus,
this technique provides a simple method for constructing provably correct circuits
from a high-level specification.

We propose a method for developing VLSI circuits from an abstract specification. The
programmer designs a concurrent program that meets this specification, and then an
automatic mechanism transforms the program into a circuit. The programmer’s proof
obligation is limited to verifying that the concurrent program is an implementation of
the specification. The program-to-circuit transformation is verified separately.

Program transformations within the source language provide a powerful tool for de-
riving implementations of programs. By working at an abstract level in a language
with a well-defined semantics, transformations, which are complex if performed at the
circuit level, are reduced to trivial syntactic manipulations. Such transformations are
both easy to perform and easy to verify. They form the core of an automatic compiler
for synthesizing self-timed circuits.

We have constructed a set of program transformation rules that, when applied to
any program in the source language, transform it into an equivalent program of a
very simple form. This form is composed only of simple basic processes that have
already been compiled into circuits. In this paper, we describe in detail this set of
program transformations. In addition, we show the compiled circuits for each of the
basic processes and the resulting syntax-directed translation rules. We also introduce
and compare various schemes for guard evaluation and then apply these schemes to a
simple example. :

*to appear in The Fusion of Hardware Design and Verification, G.J. Milne, ed., North-Holland
(1988)



(process) ( (process) { || (process) } ) { (channel) }

| { (port) } { (var) } (sequence)

(channel) := channel ( (NAME) , (NAME) )

(port) := (passive | active ) (NAME) ( (INT) , (INT) )
(var) = boolean (NAME) = ( true | false )

(sequence) = (statement) [ ; (sequence) ]

(statement) := skip

| (NAME) ( up | down )

| (NAME) ( (INT) ) : [ (responses) ]
10. | (L1*L) (ges) ]

11. (responses) (response) { | (response) }

12. (response) (INT) --> (sequence)

© 00Nk

s

13. (ges) (ge) { 1 (g }
14. (gc) := (expr) --> (sequence)
15. (expr) := (conjunct) [ or (expr) |

16. (conjunct)
17. (primary)

(primary) [ and (conjunct) |
not (primary)

18. | ¢ {expr) )

19. | (NAME)

20. | probe (NAME)
21. | (true | false)

Figure 1: Backus-Naur Form (BNF) for Source Language

1 Source Language

The source language is based on CSP[3|, with the addition of the probe[6] and a new
communication construct. A complete description of the language syntax is given in
Figure 1. We shall refer to this figure when deriving the individual transformation
rules.

A program in this language consists of a set of sequential processes with intercon-
necting channels. Associated with each sequential process is a set of ports, a set of
private variables, and a list of statements to be executed sequentially. Ports that do
not connect to another process connect to the environment.

Only boolean variables are allowed. Variables are changed by assignment to true
(x up) or to false (x down). The selection ([(gcs)]) and repetition (*[{ges)]) con-
structs are based on guarded commands. We use * [(sequence)] as an abbreviation
for * [true-->(sequence)].

Synchronization between two processes is accomplished by zero-slack communication
actions across channels denoted by pairs of ports. Of the two ports that make up a
channel, one is declared active and the other is declared passive. The process that
owns the passtve port can determine whether the other process is waiting for a com-
munication on this channel by evaluating a boolean condition called a probe. Probes
may be used in arbitrary boolean expressions.

Though concurrently operating processes may not share variables, processes may com-
municate data by exchanging values from small sets during a synchronization action.



When declaring a port, we specify both the send and receive sets of values, each set
being represented by a single integer. For example, ’

passive L(3,2)

declares a passive port L with send set {0,1,2} and receive set {0,1}. The syntactic
construct for a communication action allows different sequences of commands to be
executed based on the value received during a communication. An execution of the
communication action (on the same port, L)

L(1):[ 0-->xdown | 1 --> xup ],

sends the value 1 and simultaneously receives either a 1 or a 0. If a 0 is received, x
is set to false; if a 1 is received, x is set to true. We allow two abbreviations in the
specification of a communication action: The output value may be omitted if the port
has only one send value, and the receive value selection may be omitted if the port
has only one receive value. '

2 Target Language — Self-timed Circuits

The target of the compilation is a self-timed circuit—a set of circuit variables (nodes)
interconnected by a set of operators (gates). These circuits are designed to function
correctly regardless of the internal delays of the operators. The required operator
types include the combinational elements, WIRE, AND, and OR; and the state-holding
elements shown in Figure 2. Each operator is defined in terms of a set of production
rules[4,5]. A production rule is a simple transition rule of the form G — S, where
G is a boolean expression and S is an assignment to true or false. All references
to a circuit variable are assumed to have the same value (isochronic forks)[1,4]. A
synchronizer, which cannot be represented in terms of production rules, is included
to allow the implementation of programs with negated probes. The synchronizer, as
well as the other operators, have been implemented as CMOS standard cells.

Self-timed circuit implementations of concurrent programs are generated by imple-
menting each sequential process as a separate sub-circuit. The sub-circuits are con-
nected (by wire operators) only to implement communication actions. The simul-
taneity required in the zero-slack communications is implemented using a four-phase
handshaking protocol. In order to implement general communication actions (those
in which data is transmitted) the usual request/acknowledge pair of wires is replaced
by one wire for each send value and one wire for each receive value.

3 Syntax-directed Compilation

An arbitrary program in the source concurrent language is compiled into a target
self-timed circuit by a syntax-directed translator, similar to that used in standard
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Figure 2: State-holding Operators

program-to-machine-code compilers. Such a translator requires a set of BNF rules
describing the syntax of the source language and a set of translation rules describing
how to construct objects in the target language. In this application, an object in the
target language is a self-timed circuit. The translation rules specify how to generate
and connect circuits corresponding to the syntactic constructs. The translation rules
are derived in two logically separate phases: program transformation and basic process
compilation.

3.1 Process Decomposition

Process decomposition is the most commonly used program transformation. An ar-
bitrary program part § is replaced by a single active communication and a separate
process implementing :

a; B; b active A' passive A (a; A'; || *[[A — B; A]]) channel (4, A) .

(Read ‘P’ as “is replaced by”.) Process decomposition does not introduce concur-

rency; the active communication A’ cannot finish until A and, thus, 8 complete. The

original process and the new process may share variables and ports. These two pro-

cesses are never active concurrently; thus, exclusive access to each variable and port

is ensured. In the following, we do not explicitly declare the ports and channel used

in a process decomposition. The two ports of a channel are denoted by the same cap-
ital letter. The primed letter represents the active port. We write the above process

decomposition as:

o; 87 b oy A5y || (A/B) .

A more general form of process decomposition is used to implement constructs involv-
ing guard evaluation. An evaluation construct may be implemented in a separate pro-
cess, and if this is the case, the multi-valued result of the evaluation is communicated
back to the original process by a general communication action. Such a decomposition



is of the form:

[’Yo — ﬂo| ces |’Yn—1 — ﬂn—1]

> active G'(1,n) passive G(n,1)
(G':[0— Bo|...[n =1 —> Bn_y]
I #{[G — [0 — G(0)].... |tn-1 — G(n - 1)]]
) channel (G',G) .

Notice that each new process is less complicated than the original. The first process
performs a general communication action, while the second process evaluates the guard
set. Again, no concurrency is introduced by this transformation. The evaluation of
the guards «; in the second process completes before a statement §; initiates. This
follows from the semantics of the general communication action.

To precisely describe the transformations that follow, we use quantification instead of
abbreviated enumeration to denote structures of indefinite size. Using quantification
notation, the above decomposition becomes:

[(]7:0<i<nuvy— 6)]

> active G'(1,n) passive G(n,1)
(G':[(|i:0<i<nzi— B
|G —[(i:0<i<n:y— GE)I
) channel (G',G) .

Again, we write the final form of this decomposition as:
G:[(|i:0<i<nui— B)]| (G(n,1)/{|1:0<i<nu")).

The G(n,1) denotes the name and size of the passive port used in the decomposition.
In this case, the number of output values is n (one per guard) and the number of input
values is 1.

3.2 Target Language of the Transformations

The target language of the program transformations is a slight extension of the above
source language. Because of process decomposition, a restricted form of shared vari-
ables and shared ports is allowed. Processes may share ports and variables if references
to these objects are not made concurrently. Also, concurrent execution of multiple
statements is allowed and denoted by the comma. For example, o3 81, 02;7 denotes
the execution of «, followed by the concurrent execution of 8; and §;, and, finally, the
execution of ~.

Programs translated into this language are written in a different typeface than source
language programs. This distinction is not necessary, but serves as an aid in describing
which syntactic forms have already been or have yet to be translated. For compatibility
with the notation of previous papers[4,5|, we use overlines to denote probes (X) and
up and down arrows to denote assignment (z1,z|).



2. Process Q'
6. Sequence #[Q — A}; A Q]|
7. Skip +[Q]
8. Assignment #[[Q — z1;Q]|
9. Com [ @— L) :[(|k:0< k< n:k— A;Q]]
10. Selection *[@ — G': [1 — Q|0 — skip]]|
13. Control HQ—G:0—QO)|i:1<i<n=i— ALQM)]

14. Seqguards *[[Q — G':[1 — Q(1)
00— P:[(|1:2<i<nui-1— Q)
T

14. Conguards #[[Q@ — (,§:0<i<n:G: [l — z;1]|0 — skip]);
[0 i<z — Q); zi )]

14. Conjunction *[[QAz1A...A-zpA...— Q(i)]]

15. Seq AND #[@ — Gy :[1 — GY: [1 — Q(1)[0 — Q(0)]]0 — Q(O)]]]

15. Con AND  #[[@ — G :[1 — 2,70 — z;|],Gh: [l — 227 |0 — =5 |];
_ [mAzm — Q)3 v -z — Q(O)]]]

17. Negation *[@ — G': [1 — Q(0)|0 — Q(1)]]]

19. Variable *[@Az — Q(1)|QA -~z — Q(0)]]

20. Probe [QAX — Q1)@ A -X — Q(0)]]

21. True *[Q(1)]

Figure 3: The above basic process types are generated as the result of the program trans-
formations. Each process corresponds to a syntactic construct and is readily compiled into a
self-timed circuit.

3.3 Compilation of the Basic Constructs

Figure 3 displays all of the basic processes produced by the program transforma-
tions described in the next chapter. The remaining step is to compile these basic
processes in self-timed circuits. These compilations are straight-forward applications
of the methods described in [4,5]. When possible, reshuffling is performed on passive
communications introduced by process decomposition. The complete compilations are
described in [1].

Both the program transformations and the resulting circuits for each basic process
are described together succinctly as translation rules in circuit form. These rules are
shown later in the text as Figures 4, 5, and 6.

4 'Transformations Rules

We now derive the program transformations corresponding to each syntactic construct.
The equation numbers used to identify the transformations correspond to the numbers
used in Figures 1 and 3. Several of the BNF rules are only used to define precedence.
We do not define program transformations corresponding to these rules.



4.1 Processes, Declarations, and Channels

No transformations are applied to the parallel composition of processes or to the
declaration of ports and variables. The only transformation needed in the first five
BNF rules involves rule 2. For compatibility with the following transformations, one
process decomposition is applied so that all (sequence) forms are guarded by a passive
communication: :
{(process) b {{port)}{(var)}({sequence) )
>{(port) }{{var) (@' || (Q/(sequence})) .

The basic process @' performs exactly one active communication; thus, (sequence)
also is executed exactly once.
4.2 Sequencing

The sequential composition of a (statement) and a (sequence) is transformed by pro-
cess decomposition into the sequence of two active communications and a process
implementing each statement:

(Q/(sequence)) > (Q/(statement),; (sequence),) (6)
>+([Q — A1; 435 Q]] || (Ar/(statement),) || (Az/(sequence),) .

4.3 Skip

The skip statement is implemented as the infinite repetition of a passive communica-
tion:

(Q/(statement)) B> (Q/skip) b *[[Q — skip; Q]] > +[[@ — Q] >+[Q] .  (7)

The probe of a passive communication is always a precondition to performing the
action, so we may remove the selection statement with guard Q.

4.4 Assignment

The assignment statement decomposes into
(P/(statement)) > (P/(NAME) up) b #[[P — z1; P|] , (8)

a simple process implementing a register. The name z represents an arbitrary (NAME).
A similar decomposition is applied to assignments of false.

4.5 Communication

By applying the BNF rules corresponding to communication, we get

(Q/(statement)) B> (Q/L(5) : [{| k:0 < k < n :: k — (sequence),)]) , (9)

7



where L and j represent an arbitrary (NAME) and (INT), respectively (rules 9, 11
and 12). Process decomposition produces new processes to implement each (sequence),
yielding: _

@ — L) : [(| k: 0<k <n:uk— A}L);Q]]

| {Il k:0<k < mn: (Ar/(sequence),)) .

4.6 Selection and Repetition

To derive the implementation of the control structures, we first review the semantics
of these constructs. Operationally, the execution of the selection statement can be
described as: Repetitively evaluate each guard until one or more is true, then pick a
true one and execute the corresponding command. The program transformation,

*[[Q@ — [y1 — Bu]... |7 — Ba; Q]
P*[[@ — [v1 — B Q... |7 — Bn; Q| A v — skip]]] ,

does not change the meaning of the selection statement, but makes it easier to im-
plement because at least one guard will evaluate to true. Similarly, the repetition
statement may be transformed into:

+[[Q@ — #[11 — Bi|... |7 — Bal; Q]
P[[Q — [y1 — Bi|... | — Bul A v — Q)] .

The new forms for selection and repetition are similar. Only the position of the
communication Q is different. We can perform a general process decomposition on
both the selection and repetition forms and use the same implementation of a guarded
command set:

(Q/(statement)) b (Q/[(ges)])

B4[[Q — G': [1 — Q|0 — skip]]] || (G(2,1)/(ecs)) » (10)

where

(G(2,1)/(ges)) B (G(2,1)/(l ¥:1 <4< n e (expr),-->(sequence),))
P#[[G — [(| #:1 < ¢ < nx: (expr); — (sequence),; G(1))
(A d:1< i< n:—({expr),) — G(0)

e

The value returned by the communication G denotes the result of evaluating the dis-
junction of the guards within the guarded command set. Notice that in the selection
statement, the guarded command set is reevaluated if a false value is returned. Rep-
etition is the opposite of selection. Reevaluation occurs if the guarded command set
returns true as described by the basic process:

#[@ — G :[0— Q|1 — skip]]] .



4.7 Guarded Command Sets

The guarded command set process is decomposed into a control process that sequences
guard evaluation and the associated command execution, a set of processes that im-
plement the commands and a process that evaluates the guard set:

(@(2,1)/(ges)) B (Q(2,1)/{l i:1 <14 < n:: (expr);-->(sequence),))
PH[Q@ — G : [0 — QO)[{| i:1<i<nzi— ALQ(1))]]

| (|| #:1 <4< n:(A:i/(sequence),))

| (G(n+1,1)/{| ¢:0< 14 < n:(expr),) .

(13)

(Rules 13 and 14 are applied here.) The control process provides a separation between
the issues of guard evaluation and statement execution by storing the guard that
evaluated to true. This process distinguishes between the program state prior to the
guarded command set and the program states following the arrows in each guarded
command. Guard evaluation completes before subsequent statements change variable
values. The guard set process includes (expr),, the negation of the disjunction of all
the other expressions.

The non-trivial translation rules corresponding to the BNF rules 1-12 are shown in
Figure 4. The remainder of the paper is concerned with the compilation of the guard
set process.

4.8 Guard Set Evaluation

The semantics of the language does not specify the order in which to evaluate the
guards. Whereas the other constructs require a strict ordering between command
executions, concurrency may be exploited in guard evaluation. Because of the potential
gains of concurrency, there is no single best scheme for guard evaluation. Instead,
depending on the syntactic structure of the guard set and on invariant properties
of the original program, different evaluation schemes will produce the most efficient
implementation. Of the four schemes we describe, one is entirely sequential, while the
other three represent different methods for using and controlling concurrency.

All four decomposition schemes require that the guard sets be in special forms. The -
special forms consists of both syntactic and invariant properties. For each property,
we define a program transformation that, from an arbitrary guard set, produces an
equivalent set in which the property holds. We choose to define both the properties
and transformations because often a programmer can establish the properties (in par-
ticular, the invariants) by more subtle transformations. An automatic compiler can
bypass these transformations if the programmer specifies in the source program that
the desired properties are satisfied. We now define some properties and transforma-
tions on the guard set process,

(Qn+1,1)/{ji :0< i < nx: (expr),) -
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4.8.1 Syntactic and Invariant Properties

Mutual Exclusion A guard set is exclusive if, when it is evaluated, at most one
guard is true. This property is expressed by the invariant,

“QV(Ad,j:0<4,5 <nAi# e (~(expr); V ~(expr),)) .

The invariant can always be achieved by successive strengthenings of the guards, which
will produce an entirely deterministic implementation of the original non-deterministic
guard set. Precisely, for 1 < ¢ < n,

(expr)i=(Aj:1<j<iz —(expr) ;) A (expr);

and
(expr) = (expr), -

(Read ‘=’ as “is defined as”.)

Disjoint Disjunctive Form Two of the implementation schemes require that each
guard be in so-called “disjoint disjunctive form”. Each guard must be expressed in
AND-OR form, and when the guard set is evaluated, at most one AND term is true.
That is, a guard set is ddf, if for each expression (expr),, 0 < ¢ < n,

-Q V(A j,k:0 5 Lhk<minj#Ek: (—-(conj)f % —n(k:onj)f)) ,

where (expr); = (V j : 0 < j < m; =: (conj)?) and each {conj)! is a simple conjunction
of possibly negated variables and probes.

The program transformation to achieve the ddf property is similar to the transforma-
tion of an arbitrary expression into disjunctive normal form, except that the conjuncts
must be successively strengthened to achieve disjointness. See [1] for details. Notice
that this transformation potentially increases the size of a guard set to an exponential
in the number of its variables.

Negated Probes An expression is stable if once it becomes true, it remains true.
The underlying compilation method allows only restricted implementations of non-
stable expressions. Since process decomposition does not introduce concurrency, the
guard set process is not active concurrently with any processes modifying variables;
thus, all variables are stable in the guard set process. All positive probes are, as well,
but negated probes are not. A negated probe may change asynchronously from true
to false. We call a guard set noneg if it contains no negated probes.

Any expression containing a negated probe is potentially non-stable. We define a
transformation that stablizes all negated probes. Each probe in the guard set is
evaluated and assigned to a local variable before the boolean expressions are evaluated.
References of a probe’s value within the guard set refer to the corresponding variable’s
value.

11



Let X be the set of all negated probes named in the guard set. To transform the guard
set into noneg form,

(@r+1,1)/{| $:0< i< nu(expr)))

P[Q— (, X: XeX:[X — =zt |-X —zl]);
G:[{|1:0<i<ni— Q)]

| (G(n+1,1)/(]$:0< i< n:(expr)})),

where, for 0 < 7 < n,

(expr); = (X : X € X u: replace X by z){expr), .

Non-atomic Evaluation If a guard set is not evaluated atomically, expressions
that change value during the evaluation cause special problems. For example, the
expression X V =X may evaluate to false if different values for X are used in the two
subexpressions. A guard set is nonatomic if the subexpressions within it can be
evaluated in any order. This property is achieved if each probe in the guard set is
named only once. The same transformation used to achieve the noneg property will
put an arbitrary guard set in this form if we let X be the set of all probes named more
than once.

4.8.2 Evaluation Schemes

Sequential Guard Evaluation This scheme requires that the guard set fulfill the
nonatomic property. The guards are evaluated one by one until one evaluates to true.
If none evaluate to true, the communication Q(0) is performed. Process decomposition
for this scheme may be defined recursively. If n > 1,

(@(n+1,1)/(| £:0 < ¢ < n:(expr),))
P+{[@ — G':[1 — Q(1)
00— P :[{|i:2<i<n:zi-1— Q(i))
0 — @(0)

I
I (G(2,1)/{expr),)
I (P(r,1)/{expr)q | (| #:2 < i< n:: (expr))) ;

and,if n =1,
(@(2,1)/{expr), | (expr);) b (Q(2,1)/(expr),) .

We note that the exclusive property is not required for this decomposition. Condi-
tional evaluation ensures mutual exclusion among the guards. For the same reason,
(expr), is not used.

Evaluation of each individual guard is implemented conditionally. Sequential evalu-
ation of the and connective starts by evaluating the first sub-expression. If the first
sub-expression is true, the value of the second sub-expression determines the value of

12



conjunction. Otherwise, the value of the conjunction is false:

(Q(2,1)/(conjunct)) b (Q(2,1)/(primary), and (conjunct),)
P[Q@ — G :[1 — G} : [1 — Q(1)]0 — Q(0)]|0 — Q(0)]]]
I (G1(2,1)/(primary),) || (G2(2,1)/{conjunct),) .

The sequential scheme and the next scheme (concurrent-all) share the same decom-
positions for the remaining expression constructs. De Morgan’s Law allows the or
connective to be defined in terms of and and not:

(@(1,2)/(expr)) b (Q(1,2)/{conjunct), or (expr),)

P>(Q(1,2)/not (not (conjunct), and not {expr),)) . (15)

Similarly, false is defined in terms of true and not. Negation exchanges the results
of the evaluation:

(@(1,2)/(primary)) b (Q(1,2)/not (primary),)

b+[[@ — @': 0 — QWL — QO] || (G(L,2)/(primary),) . 7
The evaluation of a simple variable is implemented by the process:
(Q(1,2)/({primary)) b (Q(1,2)/(NAME)) (19)

PH[Q@ — [z — Q)|~z — Q(O)]]] .

If a probe is named only once in a guard set, the evaluation of a probe is implemented
by the process:

(@(2,1)/(primary)) > (Q(2,1)/probe (NAME))

B4[[@ — [X — Q(1)-X — Q(O)]] - 20

The evaluation of true has an implementation similar to that of skip:

(Q(2,1)/(primary)) b (@(2,1)/true) 1)
b+([Q — [true — Q(1) false — Q(O)]]] & +(Q(1)] .

Figure 5 shows all the translation rules used in the sequential guard evaluation scheme.

Concurrent-all Guard Evaluation This scheme requires that the guard set fulfill
both the exclusive and the nonatomic properties. Each guard is evaluated sepa-
rately and concurrently. The variable corresponding to the true guard (exactly one
because the exclusive property holds) is raised. When all guards have been evalu-
ated, the communication corresponding to the set variable is performed, and then the
variable is reset:

(Qr+1)/(|i:0 < i <n: (expr),)

P[[@ — (, 1:0<i<n = G;: [l — z;1 |0 — skip]);
[([#:0<i<n:z — Q@)= )]

[ (I #:0<7<n:(Gi(2,1)/(expr))) .

13
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Figure 5: Translation Rules for Sequential Guard Evaluation

To evaluate the and connective, both sub-expressions are evaluated concurrently and
the results stored in variables. The conjunction of these values is returned by the
communication @:

((2,1)/(conjunct)) & (Q(2,1)/(primary),and{conjunct),)
P[Q — Gy : [l — 21710 — 21]],Gy 1 [1 — 257 [0 — z,|];
[$1 ANzyg — Q(l)
|-1.'L'1 V —zqg — Q(O)

I (G1(2,1)/{primary),) || (G2(2,1)/{conjunct),) .

Figure 6 shows the translation rules corresponding to concurrent-all guard evaluation.

Concurrent-one Guard Evaluation In this scheme, all guards are evaluated si-
multaneously. The evaluation of each guard (in fact, each conjunct of each guard)
is implemented by a separate process. For this decomposition to be valid, no two of
these processes may operate concurrently. This is ensured by both the exclusive and
the ddf properties. After decomposition, each remaining basic process implements a
simple conjunction of variables and probes:

QMr+1,1)/{|i:0<i<n:u(v J:0<j<mzu (qonj)f)))
Bl ¢:0<i<n: (|| 5:0<1<m:*[[QA (conj)l — Q(2)]])) .

The noneg property is required for the implementation of each conjunction.

Concurrent-one-wait Guard Evaluation In special cases, guard evaluation may
be implemented as above without performing the all-false communication Q(0). This
evaluation scheme is possible when: i) the guard set is part of a selection statement
(no repetitions); ii) the guard set has the exclusive and ddf properties; and iii) after
replacing (expr), by false, no negated probes are named in the guard set.

14
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Figure 6: Translation Rules for Concurrent-all Guard Evaluation

4.8.3 Applying the Guard Evaluation Schemes to an Example

We illustrate the four different schemes for decomposing guard sets by applying these
schemes to a small program fragment. Consider the program fragment:

[ XAs— Y — 5.

Syntax-directed application of the program transformations results in an intermediate
form containing the process:

(Q(3,1)/XAs | Y| ~(XAsVY)) .

We construct implementations of this guard set using the four different evaluation
schemes. These circuits are shown in Figure 7. The number of two-input operators
required for each implementation is used as a general space comparison between the
schemes. For operators with more than two inputs, each extra input adds % to the
operator count.

Sequential Since the guard set has the nonatomic property (excluding the all-false
expression), the decomposition is straightforward, requiring no initial transformation
of the guard set. The resulting circuit requires 2 AND, 2 SYNC and 1 OR operators.

Concurrent-all We first put the guard set into a form that satisfies the exclusive
property:

XAs|(XAS)AY |~(XAs)A-Y .
Since X and Y are named more than once, this transformed guard set does not have
the nonatomic property. However, in this scheme, the evaluation of common sub-
expressions can be shared between guards. In particular, probes need only be evaluated

once per guard set; thus, the nonatomic property is satisfied. The resulting circuit
requires 2 AND, 2 SYNC, 163 C, and 71 OR operators.

15



Concurrent-one In this case, the guard set must satisfy both the exclusive and
the ddf properties. The transformed guard set is:

XAs| - XAYVXA-8AY |- XA-YVXA-sA-Y.

Notice the extra literals needed to ensure disjointness among the conjuncts. Since
negated probes are named in this guard set, the value of each probe is assigned to a
variable, thus satisfying the noneg property. The resulting circuit requires 2 SYNC,
2FF,1C,4 OR and 12% AND operators.

Concurrent-one-wait In order to use this scheme, the exclusive property must
hold on the original guard set, that is -Q V=X V =8 V =Y must be an invariant of the
original program. If this is the case, the guard set

X As|Y | false

can be implemented directly without any transformations, resulting ina simple circuit
requiring only 2% AND operators.

4.8.4 Comparison of the Guard Evaluation Schemes

In the above example, the sequential and the concurrent-one-wait schemes produce
the most efficient circuits. This is not always the case. For other guard sets, each of
the schemes can produce the best implementation. We discuss pros and cons of the
different schemes.

Sequential The sequential scheme provides a straightforward implementation of
an arbitrary guard set in space that is proportional to the size of the guard set’s
representation in the source language. Unfortunately, because of its sequential nature,
the time needed for evaluation is also linearly related to its size.

Concurrent-all This evaluation scheme offers several potential advantages over the
previous one. For guard sets with many guards, the time needed to evaluate the
guard set is proportional to the logarithm of the number of guards. The ability to do
common sub-expression elimination at no cost is an added benefit; however, the basic
processes have larger implementations. While this scheme has the best asymptotic
area-time performance, we have yet to find an application large enough to reap its
benefits.

Concurrent-one While exponential blow-up may occur when transforming patho-
logical guard sets into disjoint disjunctive form, this scheme produces the smallest and
fastest implementations of most expressions that do not contain probes.

16
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Concurrent-one-wait In the cases when the programmer can prove the exclusive
property without introducing negated probes, this scheme applies and provides a non-
polling implementation that does not dissipate any static power. Again, exponential
blow-up may occur, but typical implementations are much smaller and much faster
than the other schemes.

5 Automatic Compiler

We have constructed an automatic compiler which applies the translation rules derived
in this paper. The self-timed circuit description produced by the compiler is then
used as input by an automatic place-and-route tool which produces a standard cell
implementation of the circuit in VLSI. Using this completely automatic design method,
we have fabricated a functionally correct chip implementing a worm-hole message
routing system[2].

The translation method produces correct, self-timed implementations of arbitrarily
large concurrent programs, and because each translation rule is of fixed size, the
size of the implementation is no worse than linearly related to the size of the source
program. The translation method and the compiler provide a constructive proof that
this design methodology, based on programs, represents a practical approach to the
design of VLSI systems.

Acknowledgments and References

We wish to thank Pieter Hazewindus for his comments on early versions of this
manuscript and Andy Fyfe for his POSTSCRIPT expertise. This research is sponsored
by the Defense Advanced Research Projects Agency, ARPA Order number 6202, and
monitored by the Office of Naval Research under contract number N00014-87-K-0745.

[1] S.M. Burns, Automated Compilation of Concurrent Programs into Self-timed Cir-
cutts, M.S. Thesis, Caltech-CS-TR-88-2.

[2] S.M. Burns and A.J. Martin, “Syntax-directed Translation of Concurrent Pro-
grams into Self-timed Circuits”, Advanced Research in VLSI: Proc. Fifth MIT
Conference, ed. J. Allen and F. Leighton, MIT Press, pp 35-50 {1988)

[3] C.A.R. Hoare, “Communicating Sequential Processes”, Comm. ACM 21, 8, pp
666—677 (August 1978) '

[4] A.J. Martin, “Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits”, Distributed Computing, 1, pp 226-234 (1986)

[5] A.J. Martin, “The Design of a Self-Timed Circuit for Distributed Mutual Exclu-
sion”, Proc. Chapel Hill Conf. VLSI, ed. H. Fuchs, pp 247-260 (1985)

[6] A.J. Martin, “The Probe: an Addition to Communication Primitives”, Informa-
tion Processing Letters, 20, pp 125-130 (1985)

18



